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Broadside-Coupled Strips in a Layered Dielectric Medium

JAMES L. ALLEN axp MARVIN F. ESTES

Abstract—Coupling coefficient, odd- and even-mode impedances,
and the mode phase velocities are calculated for a pair of broadside-
coupled strips embedded in a layered dielectric medium and enclosed
by a rectangular shield. Large ratios of mode phase velocities can be
achieved with this structure leading to novel performance charac-
teristics for familiar coupled-line configurations such as the micro-
wave C section.

INTRODUCTION

OUPLED-LINE structures are utilized exten-
(g sively as building blocks for directional couplers,

filters, and other important transmission-line de-
vices. Coupled lines in a homogeneous medium have
equal even- and odd-mode phase velocities, but the cor-
responding velocities are unequal for coupled lines in an
inhomogeneous medium. Structures of both types have
been treated in the literature [1]-[6]. The configura-
tions that have been studied most extensively are strip-
line and microstrip structures with nearly equal even-
and odd-mode phase velocities (ratios typically less than
1.3). Deviation from equal velocities has generally been
régarded as undesirable. However, as demonstrated by
Dalley [7], configurations with large velocity ratios can
be used to advantage. The purpose of this paper is to
present design data for a coupled-line structure capable
of realizing large phase-velocity ratios.
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Schematic representation of a C section,

As an illustration of the interesting changes that can
occur in the performance of familiar devices when odd-
and even-mode phase velocities are significantly differ-
ent, consider the microwave C section shown schemati-
cally in Fig. 1. For a line with equal even- and odd-mode
velocities the C section is an all-pass structure [8]. The
response of an inhomogeneous C section is distinctly
bandpass. The ABCD or chain matrix representation
for the inhomogeneous C section can be obtained by the
method of Jones and Bolljahn [9]. The result is

P o

1
A=D = X (Z()e cot 0e _ Z()g tan 00),

where

%
B='—A— Zer()o cot Ge tan 007

y
c=2,
A

A=Z0e cot Ge ‘I" ZOo tan 00,
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Fig. 3. (a) Broadside-coupled strips in a layered dielectric medium.
Center-strip thickness is zero. (b) Variations on the structure
shown in part (a).

f.=P: even-mode electrical length of line,
0, =P, odd-mode electrical length of line,
Zy, odd-mode impedance,

Zyw even-mode impedance.

In terms of the ABCD parameters the insertion ratio
for a network terminated by Z; and driven by a genera-
tor with impedance Z¢ is

. . . AZ, + CZ.Ze¢ + B+ DZg
insertion ratio = ‘ (2)
Zy+ Zg

The response of a C section with a phase-velocity ratio
of 1.9, c¢dd- and even-mode impedances 25 and 110 Q,
respectively, a coupled section length of 0.625 ¢m, and
Z.=Z¢=50 Q is shown in Fig. 2. The bandpass re-
sponse is quite pronounced with three peaks in attenua-
tion for the single section.

The basic configuration, shown in Fig. 3, consists of a
pair of broadside-coupled strips embedded in a layered
dielectric medium and enclosed in a rectangular shield.
Coupling coefficient, odd- and even-mode impedances,
and the mode phase velocities are calculated for a
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variety of material and structural parameters. The re-
sults are presented in the form of design curves. The
homogeneous case (e2=¢;) has been studied earlier by
Krage and Haddad [4], and the case where =1,
e =2.35 with the strips excited in phase (even mode)
corresponds to the dielectric-supported air stripline
with side walls studied recently by Gish and Graham
[10].

FORMULATION OF THE PROBLEM

The layered dielectric precludes pure TEM-mode
propagation. It is assumed, however, that the longi-
tudinal components of the E- and H-fields are so small
compared to the transverse field that they can be ne-
glected. This approximation, which has been shown [6]
to give excellent results for coupled microstrip up to
frequencies of several gigahertz, is used throughout the
following analysis. On the basis of the quasi-TEM as-
sumption the calculation of impedances, phase veloci-
ties, and coupling coefficient reduces, essentially, to a
solution of the two-dimensional Laplace’s equation
V@ (x, v)=0, subject to boundary conditions deter-
mined by the geometry of the line. The method of Gish
and Graham [10] is employed here to calculate the odd-
and even-mode capacitances. Impedances, phase veloci-
ties, and coupling coefficients are calculated from the
capacitance values. The odd- and even-mode imped-
ances and velocities and the coupling coefficient can be
expressed in terms of the capacitances as

1
Zyp = ————=——= = odd-mode impedance 3)
94/ Cod Coo?
1
Ze = ——=———— = even-mode impedance 4)
7)f\/COefCOad
Cod .
Vo = 2y = odd-mode velocity (5)
C()od
Cod .
Vo = U o= even-mode velocity (6)
Oe

. \/COOI‘COod - ‘\/COefCOed

= = coupling coefficient (7)
’\/COOICUOd - \/COefCOed

where 2; = velocity of light in free space,

< Cloe? ) (even)
Cw?/ \odd

< Cos’ ) (even)
Co/ / \odd

mode capacitance per unit
length with the layered dielec-
tric in place

mode capacitance per unit
length with the dielectric layers
replaced by free space (i.e.,

&= ¢ = 1).
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(a) Sketch of electric-field lines for even mode. (b) Sketch
of electric-field lines for odd mode.

Fig. 4.

CAPACITANCE SOLUTIONS

Sketches of the electric-field lines for the odd and
even modes are shown in Fig. 4. In view of the sym-
metry of the configuration, the field solution is required
for only one quarter of the cross section, as shown in
Fig. 5. The total capacitance":for each mode is simply
four times that obtained for the quarter section.

Each capacitance is calculated using the following
lower bound variational expression as given in [11, p.

194]:
[, roe]

Co - a @ (8)
f f Gols, £, d, ) (x)o () d du

where

G, Green's function,
o  charge density on center strip.

The integral limits and variable names have been
adapted to the present problem. For the even mode the
Green’s function is given by [10, eq. (18)]. The Green’s
function for the odd mode can also be determined by the
method used by Gish and Graham and is found to be
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sin v,y sinh v,(b — d) sin vy, sin y.&

2
GOO(x> &y, d) = -

n
5 [e1 cosh v,d sinh v,(b — d) + €; cosh v, (b — d) sinh v,d]

) for0 <y <d

- i...(

where v, = (nm/2a). The unknown charge density on the
center strip for each mode is expanded in a cosine series.
The approximate charge density for the even mode is
given by [10, eq. (12)]. For the odd mode the corre-
sponding expression is

. . . 9)
sin v,d sinh v,(b — ) sin y,x s " 7
in vy Ya(b — ¥) sin y,x sin v,¢ , ford <y < b
”
2 [e1 cosh v,d sinh v, (b — d) + € cosh v,(b — d) sinh vad]
N 2ar(x — a + w
vo(#) = 3 kr cos [L—)] (10)
r=0 Z‘w

Substituting the appropriate Green's function and
charge density into (8) and performing the indicated
integrations leads to expressions for the odd-
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and even-mode capacitances. The even-mode capacitance is given by [10, eq. (19)]. The odd-mode capaci-

tance is
1
COod = fe_o{ (11)
2!l N N
[ 2 2 kikaQs
r=0 r=0
where
( 2an >2 .
—— ) B, sin?y,w
i W
Qrs = Z T (12&)
n=1.3.5, - 2ar\? 2as\?
l:nz —|— nt — | ——
w w
and
inh v,d sinh v,(b — d
B, = sinh «,d sinh v,( ) (12b)

n
3 [e; cosh v,d sinh v, (b — d) + e cosh v, (b — d) sinh v,d]

The series for Q,; and the corresponding series for the
even mode are, in general, slowly converging. Alter-
nate forms which converge rapidly were used to carry
out the numerical calculations. These rapidly converg-
ing forms were obtained using the contour integration
method described in [11, pp. 582-589].

At this point all parameters in equations for the
capacitances can be evaluated except the &'s and #'s
which are coefficients of the charge-density series. To
solve for the k’s, form the first partial derivatives
0Cy?/dk,) and set them equal to zero yielding the fol-
lowing set of IV inhomogeneous equations:

N
ZkaQrsz _Q()s for 7=1,2,3,"',N. (13)
8=1

This set of equations was solved using the Cholesky
method as described in [12, ch. 5] programmed for a
CDC 6400 digital computer. The values for the coeffi-
cients k, from (13) were substituted into (11) and Coy?
evaluated. Various values of N were used. A value
N =22 gave capacitance values accurate to one in the
fourth place. The parameters for the even mode are de-
termined in a similar manner. The values of Cy/ and
Co are obtained by setting ¢, =e;=1.0.
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NUMERICAL RESULTS

By adjusting the parameters of the structure shown
in Fig. 3, it is possible to achieve a wide range of mode
phase velocities. If the dielectric constant of the center
slab is greater than that of the upper and lower slabs,
the even-mode velocity is greater than the odd-mode
velocity. If the dielectric constant of the center slab is
less than that of the other two slabs, the even-mode
velocity is the smaller of the two. If all three dielectrics
are the same, the odd- and even-mode velocities are
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equal. As shown in Figs. 6, 7, and 13, the velocity ratio
%/Y, may be varied over the range 0.43 < (v/v,) <2.9
using materials with dielectric constants less than 16.
Due to fringe field effects, increasing the dielectric con-
stant above 16 is less effective in increasing the velocity
ratio, particularly for relatively narrow center strips.
Figs. 8-10 present phase-velocity ratio, odd-mode
phase velocity, and odd- and even-mode impedances
with the aspect ratio (a/b) =4, center-slab thickness
t=0.1b, and air as the upper and lower dielectric layers.
Increasing either the dielectric constant of the center
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slab or the width of the center strips increases the phase-
velocity ratio and decreases both Zg, and Zg,.. Although
not shown in these figures, the phase velocities rapidly
approach zero as the values of (w/b) and (a/b) become
equal (i.e., when the center strips touch the side walls).
With wide center strips [(w/0)=0.8] and e&=16, a
velocity ratio of about 3 can be achieved. As shown in
Fig. 11, the coupling coefficient increases with both in-
creasing € and center strip’ widths.

Figs. 12-14 contain velocity and impedance data for
the case where the aspect ratio is (a/b) =1/4, center-
slab thickness t=0.1 @, and air is the upper and lower
dielectric layer. In these figures (w/a) = 1.0 corresponds
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to the center strips touching the side walls. The velocity
ratio has a maximum value of about 2 for =16 and
(w/a)=0.4.

Figs. 15-18 show velocity, impedance, and coupling
coefficient data with aspect ratio (a/b) =4, spacing be-
tween center strips t=0.1 b, and air as the center dielec-
tric layer. For this case the velocity ratio v./v, is less
than 1 and deceases with both increasing ¢ and center-
strip widths. With (w/b)=0.8 and ¢ =16, the velocity
ratio is about 0.45. The coupling coefficient decreases
with increasing ¢ and increases with increasing center-
strip widths.

Figs. 19-22 present velocity, impedance, and coupl-
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ing coefficient data with (w/a) and (¢/b) held constant
while the aspect ratio (a/b) is varied between 0.1 and 10.
With aspect ratio equal to 10 and & =20, the velocity
ratio is about 3.25. The coupling coefficient varies from

almost zero to almost unity as the aspect ratio varies
from 0.1 to 10.

SUMMARY AND CONCLUSIONS

The characteristics of a pair of broadside-coupled
strips embedded in a layered dielectric medium and en-
closed in a rectangular shield have been presented. With
this structure it is possible to achieve large ratios of
even- and odd-mode phase velocities. Significant changes
occur in the behavior of familiar coupled-line configura-
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tions when a large phase-velocity ratio exists, as exem-
plified by the pronounced bandpass response of the in-
homogerieous C section in contrast with the all-pass
response of the homogeneous C section.
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Computer Analysis of the Fundamental and Higher Order
Modes in Single and Coupled Microstrip

DOUGLAS G. CORR anp J. BRIAN DAVIES

Abstract—=By means of finite difference methods, dispersion
curves are obtained for the fundamental and higher order hybrid
modes in both single and coupled microstrip. Structures of realistic
proportions are investigated by the use of a graded finite difference
mesh. Variational methods are used in deriving the finite difference
equations. The higher order modes are found to be similar to LSM
slab line modes. A spurious nonphysical class of solutions is found to
exist in this and similar formulations, the characteristics of which
are described.
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[. INTRODUCTION

N MODERN microwave devices the integrated cir-
J:[ cuit is a fundamental component, and microstrip is

an essential part of such circuits [1], [2]. Many
articles have appeared giving design data for single
microstrip [3]-[7], and for pairs of coupled strips [&],
but common to all but a few of these publications is the
assumption that the fundamental mode of propagation
may be approximated by TEM mode propagation (the
quasi-static approximation). Because microstrip is a de-
vice which contains two different dielectric media, the
mode supported can never be TEM (except for dc
operation), and in general a hybrid mode propagates.
Design based on the quasi-static approximation has
often been found to be adequate for the fundamental
mode when considering operation below about 4 GHz
with low permittivity substrates (k below 6). However,
recent developments require the operation of micro-



